Useful Resources
Some good textbooks I’ve used…
Machine Learning
-
Sutton, Richard S., and Andrew G. Barto. Reinforcement learning: An introduction, 2011.
-
Bishop, Christopher M. Pattern recognition and machine learning. Springer, 2006.
-
Murphy, Kevin P. Machine learning: a probabilistic perspective. MIT press, 2012.
-
Goodfellow, Ian, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press, 2016.
- Leskovec, Jure, Anand Rajaraman, and Jeffrey David Ullman. Mining of massive datasets. Cambridge university press, 2014.
Optimization
-
Boyd, Stephen, and Lieven Vandenberghe. Convex optimization. Cambridge university press, 2004.
-
Bertsimas, Dimitris, and John N. Tsitsiklis. Introduction to linear optimization. Vol. 6. Belmont, MA: Athena Scientific, 1997
Online courses I can recommend…
Machine Learning
- Great introduction to ML that covers a lot of topics: Video: youtube link Notes: http://cs229.stanford.edu/syllabus.html
- Really nice introduction to neural networks that I like to recommend to students: CS231n: Convolutional Neural Networks for Visual Recognition
Coding
- When I started coding many years ago, I used this short-course to get started. MIT Open Courseware (6.189): A Gentle Introduction to Programming Using Python